Technology Preparedness for the Steel Industry

November 07, 2017

Mr. Sanjiv Paul
Vice President, Safety, Health & Sustainability
Tata Steel Limited
Steel Industry Premise

- Globally, steel industry accounts for 6-7 % of the CO₂ emissions

- Hard to abate sector (BF-BOF route)-Carbon as reductant

 Global Best in Class ~1.8 tCO₂e/tcs [WSA]

- Technological interventions for lowering carbon footprint [last two decades]
 - Process optimisation for driving resource efficiencies (Coke rate, Raw material beneficiation)
 - Higher energy efficiency through waste heat recovery (TRT, CDQ)
 - Product improvements for lower lifecycle footprint (Hi Strength Steel)

- Alternatives to carbon as a reductant has low feasibility (commercial, operational)
Steel Industry- Possible Alternatives for Low Carbon Regime

Conserving Now, Preserving Future

GHG Intensity of Materials

1. **Material Recycling**
 - Scrap aggregation for EAF route, Pelletisation of low grade iron ore, LD Slag utilisation

Product Intensity of Services

1. **Prolonged Lifetimes**
 - Anti corrosion, anti rusting technologies

2. **Sharing of assets to reduce consumption: Services**

Material Intensity of Products

1. **Design optimisation in end products** - Hi Strength Steel

2. **Material Substitution** - New Materials with lower carbon footprint
Steel Industry - Possible Alternatives for Low Carbon Regime

Supply Side

Energy Efficiency
1. Maximise Waste heat recovery
 - Larger blast furnaces, Top Recovery Turbines, Coke Dry Quenching, Waste heat recovery Boilers etc.

Fuel Substitution
1. Hydrogen as alternative to Carbon as reductant
2. Higher share of renewable in energy mix

CCS
1. Affordable and scalable technology for Carbon Capture and storage
 - eg. Hlsarna
2. Develop usage of stored carbon

Conserving Now, Preserving Future
Steel Industry- Key Issues

1. Hydrogen as a substitute for Carbon as a reductant
 Institutional backing to develop technology to produce Hydrogen at economically viable cost

2. Scalable and affordable technology for Carbon Sequestration
 Institutional backing to develop economically viable technology

3. Higher use of renewable in the energy mix [applicable for India]
 Grid capacity and capability for accommodating large and fluctuating Steel Plant loads
Thank You
Lowering CO₂ footprint

Japan: Steel industry’s voluntary plan

Table 2: Targets of JISF Commitment to a Low Carbon Society.²⁵⁹

<table>
<thead>
<tr>
<th>Phase I</th>
<th>Phase II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eco-Processes</td>
<td>Eco-Processes</td>
</tr>
<tr>
<td>Reduction target of 5 million t-CO₂ vs BAU *¹</td>
<td>Reduction target of 9 million t-CO₂ vs BAU *¹</td>
</tr>
<tr>
<td>Eco-Products</td>
<td>Eco-Products</td>
</tr>
<tr>
<td>Contribute to reduction of approx. 34 million t-CO₂ (estimated)</td>
<td>Contribute to reduction of approx. 42 million t-CO₂ (estimated)</td>
</tr>
<tr>
<td>Eco-Solutions</td>
<td>Eco-Solutions</td>
</tr>
<tr>
<td>Contribute to reduction of approx. 70 million t-CO₂ (estimated)</td>
<td>Contribute to reduction of approx. 80 million t-CO₂ (estimated)</td>
</tr>
</tbody>
</table>

Innovative Technology Development

- **COURSE 50** → 30% reduction in CO₂ by 2050

*¹ BAU: Abbreviation of “Business as Usual”; in these target values, it means the CO₂ emission assuming crude steel production using FY 2005 as the baseline.

*² Preconditioned on creation of infrastructure for CO₂ storage and securing economic rationality for commercial equipment.
1) Development of technologies to reduce CO₂ emissions from blast furnace
 • Technologies to control reactions for reducing iron ore with reducing agents such as hydrogen to decrease coke consumption in BF.
 • Technologies to reform coke oven gas (COG) aiming at amplifying its hydrogen content by utilizing unused waste heat (800°C generated at coke ovens).
 • Technologies to produce high strength and high reactivity coke for reduction with hydrogen.

2) Development of technologies to capture - separate and recover - CO₂ from blast furnace gas
 • Techniques for chemical absorption and physical adsorption to capture CO₂ from blast furnace gas (BFG).
 • Technologies to reduce energy to capture CO₂ through enhanced utilization of unused waste heat from steel plants.

Target: 30% Reduction of CO₂ in Steel Works until 2050
Sunlight can convert iron ore to steel!

Hydrogen essentials

Renewables
- Solar
- Wind
- Wave
- Hydro
- Nuclear
- Geothermal

Electrolysis of water

\[H_2O \rightarrow H_2 + O \]

Oxygen removal potential

\[\begin{align*}
 H_2 & \rightarrow H_2O & 0.5 O_2 \\
 C & \rightarrow CO_2 & 1 O_2
\end{align*} \]

Reduction gas

\[FeOx + xH_2 \rightarrow Fe + xH_2O \]

Electricity intensive used only to make oxygen in space

- Electricity needed ≈ 50 kWh / kg \(H_2 \)
- Another 15 kWh for compression of produced \(H_2 \)
 - \(2 H_2 = 1 C \) (4 kg \(H_2 = 12 \) kg \(C \)) ... 65 kWh x 4
 - 260 kWh = 12 kg \(C \) ... viable when electricity costs Rs 0.50/kWh and Coal Rs 10 / kg

EAF

DRI

DRI charge

Liquid steel

Iron Making Division

Conserving Now, Preserving Future
CO$_2$ emission of technology routes:

- **DR**: 100%
- **BF**: 95%
- **BOF**: 64%
- **EAF**: 68%

The generation of electric energy has the main influence on the CO$_2$ generation beside the basic differences of the two steelmaking technology routes.

Voestalpine Steel Division
28 | 28.04.2015 | Challenges for resource intensive processes
<table>
<thead>
<tr>
<th></th>
<th>Hot Metal based on Coke + PCI</th>
<th>DRI based on Natural gas</th>
<th>DRI based on Coke Oven gas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coke - C</td>
<td>CH₄</td>
<td>55% H₂, 25% CH₄</td>
</tr>
<tr>
<td></td>
<td>PCI ~ 4-5 % H₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reducing molecules</td>
<td>90:10</td>
<td>35:65</td>
<td>20:80</td>
</tr>
<tr>
<td>C:H₂ ratio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂ footprint, t / t</td>
<td>1.80</td>
<td>0.42</td>
<td>0.30</td>
</tr>
<tr>
<td>Melting energy</td>
<td>already molten</td>
<td>Electricity</td>
<td>Electricity or “BOF excess”</td>
</tr>
<tr>
<td>Examples – exact and similar ideas</td>
<td></td>
<td>std NG based DR→EAF</td>
<td>Dolvi Hazira Poland ?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VA – mixing with BF-BOF approach</td>
<td>Posco – Finex excess DRI</td>
</tr>
</tbody>
</table>
Conserving Now, Preserving Future

Concept of Iron Ore Hydrogen Reduction

- **Conventional BF**
 - 60% CO Indirect Reduction: Exothermic reaction
 \[\text{FeO} + \text{CO} \rightarrow \text{Fe} + \text{CO}_2 + 413.6 \text{kcal/kmol} \]
 - 10% H₂ Indirect Reduction: Endothermic reaction
 \[\text{FeO} + \text{H}_2 \rightarrow \text{Fe} + \text{H}_2\text{O} - 570.2 \text{kcal/kmol} \]
 - 30% Carbon Direct Reduction: Large Endothermic reaction
 \[\text{FeO} + \text{C} \rightarrow \text{Fe} + \text{CO} - 3708.4 \text{kcal/kmol} \]

COURSE50 BF

- 60% Carbon Consumption (Target Level)

H₂ reductant

We develop technologies to control reactions for reducing iron ore by use of H₂ reductant to decrease carbon consumption in BF.
Variations of BF process

simulations of lowering CO\textsubscript{2} footprint

ULCOS concept

JFE simulation

a) Conventional BF

b) Oxygen BF with top gas recycling

c) Advanced oxygen BF

Conserving Now, Preserving Future
UCG with Carbon Capture and Storage (UCG-CCS)

Carbon capture and storage (CCS) aims to reduce net greenhouse gas emissions, chiefly CO₂, through storage of gas underground.

Storage Targets

- Saline Aquifers
- Depleted Oil & Gas fields (w/ or w/o EOR and EGR)
- Unmineable Coal Seams (w/ or w/o ECBM)
A simpler hydrogen based CO$_2$ footprint reduction?

- BF Coke: 300 kg/thm
 - PCI: 220

- Coke Ovens
 - Coking coal: 450 kg/thm

- DR shaft
 - COG: 135 Nm3/thm

- HM 1 t @ 2.1 t CO$_2$/t
- DRI 0.25 t @ 0.3 t CO$_2$/t

Iron 1.25 t @ 1.92 t CO$_2$/t

9 % reduction in CO$_2$ footprint per t of iron
Using the underground to greener steelmaking

Footprint.. CO₂

Case 1
DRI - 1.2
EAF - 0.7 power from syn gas
Overall
~2.0 t CO₂ / tcs (100% ore based)

Case 2
DRI - 1.2
EAF - 0.1 power from renewables
Overall
~1.3 t CO₂ / tcs (100% ore based)

Case 3
Sequestration of CO₂ from both DRI and power generation
Overall
~0.4 t CO₂ / tcs (100% ore based)
.. the **iron** ahead: *summary*

- **India** – a lot more liquid iron production is imminent
 - the BF will dominate by far

- **Leverage technology** to address chronic issues
 - eg. coal moisture, adverse ore characteristics

- **The BF will get bigger** – need to prepare far more:
 - visualization, understanding, additional controls

- **Leverage precious hydrogen to maximize footprint reduction**
 - make more iron with it
SUSTAINABILITY INDICATORS 2003 - 2016

Environmental performance

<table>
<thead>
<tr>
<th></th>
<th>Greenhouse gas emissions (tonnes CO₂/tonne crude steel cast)</th>
<th>Energy Intensity (GJ/tonne crude steel cast)</th>
<th>Material efficiency (% of materials converted to products & byproducts)</th>
<th>Environmental management systems (EMS) (% of employees & contractors working in EMS-registered production facilities)</th>
</tr>
</thead>
</table>